Chemical Characterisation, Antidiabetic, Antibacterial, and In Silico Studies for Different Extracts of Haloxylon stocksii (Boiss.) Benth

A Promising Halophyte

authored by
Syed Nabil Raza Rizvi, Samina Afzal, Kashif-ur-Rehman Khan, Hanan Y. Aati, Huma Rao, Bilal Ahmad Ghalloo, Muhammad Nadeem Shahzad, Duraiz Ahmed Khan, Tuba Esatbeyoglu, Sameh A. Korma
Abstract

The objective of the study is to evaluate the chemical characterisation, and biological and in silico potential of Haloxylon stocksii (Boiss.) Benth, an important halophyte commonly used in traditional medicine. The research focuses on the roots and aerial parts of the plant and extracts them using two solvents: methanol and dichloromethane. Chemical characterisation of the extracts was carried out using total phenolic contents quantification, GC-MS analysis, and LC-MS screening. The results exhibited that the aerial parts of the plant have significantly higher total phenolic content than the roots. The GC-MS and LC-MS analysis of the plant extracts revealed the identification of 18 bioactive compounds in each. The biological evaluation was performed using antioxidant, antibacterial, and in vitro antidiabetic assays. The results exhibited that the aerial parts of the plant have higher antioxidant and in vitro antidiabetic activity than the roots. Additionally, the aerial parts of the plant were most effective against Gram-positive bacteria. Molecular docking was done to evaluate the binding affinity (BA) of the bioactive compounds characterised by GC-MS with diabetic enzymes used in the in vitro assay. The results showed that the BA of γ-sitosterol was better than that of acarbose, which is used as a standard in the in vitro assay. Overall, this study suggests that the extract from aerial parts of H. stocksii using methanol as a solvent have better potential as a new medicinal plant and can provide a new aspect to develop more potent medications. The research findings contribute to the scientific data of the medicinal properties of Haloxylon stocksii and provide a basis for further evaluation of its potential as a natural remedy.

Organisation(s)
Institute of Food Science and Human Nutrition
Molecular Food Chemistry and Food Development
External Organisation(s)
Bahauddin Zakariya University
The Islamia University of Bahawalpur
University of Minnesota
King Saud University
Zagazig University
South China University of Technology
Type
Article
Journal
Molecules
Volume
28
ISSN
1420-3049
Publication date
01.05.2023
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Drug Discovery, Analytical Chemistry, Chemistry (miscellaneous), Molecular Medicine, Physical and Theoretical Chemistry, Pharmaceutical Science, Organic Chemistry
Sustainable Development Goals
SDG 3 - Good Health and Well-being
Electronic version(s)
https://doi.org/10.3390/molecules28093847 (Access: Open)